APLICACIONES DE LA FUNCION


Las funciones cuadráticas son más que curiosidades algebraicas — son ampliamente usadas en la ciencia, los negocios, y la ingeniería. La parábola con forma de U puede describir trayectorias de chorros de agua en una fuente y el botar de una pelota, o pueden ser incorporadas en estructuras como reflectores parabólicos que forman la base de los platos satelitales y faros de los carros. Las funciones cuadráticas ayudan a predecir ganancias y pérdidas en los negocios, graficar el curso de objetos en movimiento, y asistir en la determinación de valores mínimos y máximos.
Comúnmente usamos ecuaciones cuadráticas en situaciones donde dos cosas se multiplican juntas y ambas dependen de la misma variable. Por ejemplo, cuando trabajamos con un área. Si ambas dimensiones están escritas en términos de la misma variable, usamos una ecuación cuadrática. Porque la cantidad de un producto vendido normalmente depende del precio, a veces usamos una ecuación cuadrática para representar las ganancias como un producto del precio y de la cantidad vendida. Las ecuaciones cuadráticas también son usadas donde se trata con la gravedad, como por ejemplo la trayectoria de una pelota o la forma de los cables en un puente suspendido.


Usando la Parábola

Una aplicación muy común y fácil de entender de una función cuadrática es la trayectoria seguida por objetos lanzados hacia arriba y con cierto ángulo. En estos casos, la parábola representa el camino de la pelota (o roca, o flecha, o lo que se haya lanzado). Si graficamos la distancia en el eje x y la altura en el eje y, la distancia que del lanzamiento será el valor de x cuando y es cero. Este valor es una de las raíces de una ecuación cuadrática, o intersecciones en x, de la parábola. Sabemos cómo encontrar las raíces de una ecuación cuadrática — ya sea factorizando, completando el cuadrado, o aplicando la fórmula cuadrática.
Otro uso común de las ecuaciones cuadráticas en aplicaciones del mundo real es encontrar el valor máximo (el mayor o más alto) o el mínimo (el menor o más bajo) de algo. Recuerda que el vértice es el punto donde una parábola da la vuelta. Para una parábola que abre hacia abajo, el vértice es el punto más alto, lo que ocurre al máximo valor posible de y. Para una parábola que abre hacia abajo, el vértice es el punto más bajo de la parábola, y ocurre al mínimo valor de y.

Para encontrar el máximo o el mínimo con una ecuación cuadrática, usualmente queremos poner la ecuación cuadrática en su forma vértice de una ecuación cuadrática,  
Esto nos permite rápidamente identificar las coordenadas del vértice (hk).

Veamos cómo funciona esto con un problema de movimiento. La ecuación  
es comúnmente usada para modelar un objeto que ha sido lanzado o aventado. La variable representa la altura en pies, y t representa el tiempo en segundos. Los otros dos valores son números generalmente dados: h0 es la altura inicial en pies y v0 es la velocidad inicial en pies/segundo.

Cuando trabajamos con esta ecuación, asumimos que el objeto está en "caída libre", lo que significa que se mueve sólo bajo la influencia de la gravedad. No hay resistencia contra el aire u otra interferencia de ningún tipo (no tan parecido al mundo real, pero de todos modos, estas ecuaciones son útiles).

Pudimos haber encontrado el vértice usando otros métodos, por ejemplo graficando o usando la fórmula 
 para encontrar la coordenada x del vértice, y luego sustituir ese valor de x en la fórmula original para encontrar el valor y del vértice.



1 comentario: